1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
| 14 Oct 18:21 INFO PixedRec2 The number of users: 200001 Average actions of users: 18.82828 The number of items: 96283 Average actions of items: 39.22926107655926 The number of inters: 3765656 The sparsity of the dataset: 99.98044495304563% Remain Fields: ['user_id', 'item_id_list', 'item_id', 'item_length'] 14 Oct 18:21 INFO [Training]: train_batch_size = [512] negative sampling: [None] 14 Oct 18:21 INFO [Evaluation]: eval_batch_size = [1024] eval_args: [{'split': {'LS': 'valid_and_test'}, 'order': 'TO', 'mode': 'full', 'group_by': 'user'}] [INIT DEBUG] all_num_embeddings: 192564 [INIT DEBUG] interest_ratio: 0.5 [INIT DEBUG] num_interest: 96282 [INIT DEBUG] interest_embeddings size: 96283 14 Oct 18:21 INFO Loading from saved/MISSRec-FHCKM_mm_full-100.pth 14 Oct 18:21 INFO Transfer [FHCKM_mm_full] -> [PixedRec2 The number of users: 200001 Average actions of users: 18.82828 The number of items: 96283 Average actions of items: 39.22926107655926 The number of inters: 3765656 The sparsity of the dataset: 99.98044495304563% Remain Fields: ['user_id', 'item_id_list', 'item_id', 'item_length']] 14 Oct 18:21 INFO Fix encoder parameters. 14 Oct 18:21 INFO MISSRec( (item_embedding): Embedding(96283, 300, padding_idx=0) (position_embedding): Embedding(50, 300) (trm_model): Transformer( (encoder): TransformerEncoder( (layers): ModuleList( (0): TransformerEncoderLayer( (self_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=300, out_features=300, bias=True) ) (linear1): Linear(in_features=300, out_features=256, bias=True) (dropout): Dropout(p=0.5, inplace=False) (linear2): Linear(in_features=256, out_features=300, bias=True) (norm1): LayerNorm((300,), eps=1e-12, elementwise_affine=True) (norm2): LayerNorm((300,), eps=1e-12, elementwise_affine=True) (dropout1): Dropout(p=0.5, inplace=False) (dropout2): Dropout(p=0.5, inplace=False) ) ) (norm): LayerNorm((300,), eps=1e-12, elementwise_affine=True) ) (decoder): TransformerDecoder( (layers): ModuleList( (0): TransformerDecoderLayer( (self_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=300, out_features=300, bias=True) ) (multihead_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=300, out_features=300, bias=True) ) (linear1): Linear(in_features=300, out_features=256, bias=True) (dropout): Dropout(p=0.5, inplace=False) (linear2): Linear(in_features=256, out_features=300, bias=True) (norm1): LayerNorm((300,), eps=1e-12, elementwise_affine=True) (norm2): LayerNorm((300,), eps=1e-12, elementwise_affine=True) (norm3): LayerNorm((300,), eps=1e-12, elementwise_affine=True) (dropout1): Dropout(p=0.5, inplace=False) (dropout2): Dropout(p=0.5, inplace=False) (dropout3): Dropout(p=0.5, inplace=False) ) ) (norm): LayerNorm((300,), eps=1e-12, elementwise_affine=True) ) ) (LayerNorm): LayerNorm((300,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.5, inplace=False) (loss_fct): CrossEntropyLoss() (plm_embedding): Embedding(96283, 512, padding_idx=0) (img_embedding): Embedding(96283, 512, padding_idx=0) (text_adaptor): Linear(in_features=512, out_features=300, bias=True) (img_adaptor): Linear(in_features=512, out_features=300, bias=True) ) Trainable parameters: 29193301.0 14 Oct 18:21 INFO Trainable parameters: ['fusion_factor', 'item_embedding.weight', 'LayerNorm.weight', 'LayerNorm.bias', 'text_adaptor.weight', 'text_adaptor.bias', 'img_adaptor.weight', 'img_adaptor.bias'] 14 Oct 18:21 INFO Discovering multi-modal user interest before 0-th epoch adjust batchsize from 2048 (given) to 105910 because the cluster_num = 96282 clustering iter: 0%| | 0/5 [00:01<?, ?it/s] 14 Oct 18:21 INFO Finish multi-modal interest discovery before 0-th epoch Train 0: 0%| | 0/6574 [00:00<?, ?it/s] ============================================================ [DEBUG] item_seq shape: torch.Size([512, 433]) [DEBUG] item_seq dtype: torch.int64 [DEBUG] item_seq max: 94644 [DEBUG] item_seq min: 0 [DEBUG] item_seq unique values count: 7939 [DEBUG] First batch item_seq: tensor([14190, 19291, 5131, 10240, 19290, 19289, 19288, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], device='cuda:0') [DEBUG] plm_embedding size: 96283 [DEBUG] plm_interest_lookup_table size: 96283 [DEBUG] n_items: 96283 [DEBUG] img_embedding size: 96283 [DEBUG] img_interest_lookup_table size: 96283 ============================================================
[DEBUG Interest] all_interest_seq shape: torch.Size([512, 866]) [DEBUG Interest] all_interest_seq max: 95750 [DEBUG Interest] all_interest_seq min: 0 [DEBUG Interest] interest_embeddings size: 96283 [DEBUG Interest] unique_interest_seq shape: torch.Size([512, 23]) [DEBUG Interest] unique_interest_seq max: 95750 [DEBUG Interest] unique_interest_seq min: 0 /opt/conda/conda-bld/pytorch_1670525541035/work/aten/src/ATen/native/cuda/Indexing.cu:1141: indexSelectLargeIndex: block: [117,0,0], thread: [24,0,0] Assertion `srcIndex < srcSelectDimSize` failed. /opt/conda/conda-bld/pytorch_1670525541035/work/aten/src/ATen/native/cuda/Indexing.cu:1141: indexSelectLargeIndex: block: [117,0,0], thread: [25,0,0] Assertion `srcIndex < srcSelectDimSize` failed. /opt/conda/conda-bld/pytorch_1670525541035/work/aten/src/ATen/native/cuda/Indexing.cu:1141: indexSelectLargeIndex: block: [117,0,0], thread: [26,0,0] Assertion `srcIndex < srcSelectDimSize` failed. /opt/conda/conda-bld/pytorch_1670525541035/work/aten/src/ATen/native/cuda/Indexing.cu:1141: indexSelectLargeIndex: block: [117,0,0], thread: [27,0,0] Assertion `srcIndex < srcSelectDimSize` failed. /opt/conda/conda-bld/pytorch_1670525541035/work/aten/src/ATen/native/cuda/Indexing.cu:1141: indexSelectLargeIndex: block: [117,0,0], thread: [28,0,0] Assertion `srcIndex < srcSelectDimSize` failed. /opt/conda/conda-bld/pytorch_1670525541035/work/aten/src/ATen/native/cuda/Indexing.cu:1141: indexSelectLargeIndex: block: [117,0,0], thread: [29,0,0] Assertion `srcIndex < srcSelectDimSize` failed. /opt/conda/conda-bld/pytorch_1670525541035/work/aten/src/ATen/native/cuda/Indexing.cu:1141: indexSelectLargeIndex: block: [117,0,0], thread: [30,0,0] Assertion `srcIndex < srcSelectDimSize` failed. /opt/conda/conda-bld/pytorch_1670525541035/work/aten/src/ATen/native/cuda/Indexing.cu:1141: indexSelectLargeIndex: block: [117,0,0], thread: [31,0,0] Assertion `srcIndex < srcSelectDimSize` failed. Train 0: 0%| | 0/6574 [00:01<?, ?it/s] Traceback (most recent call last): File "finetune.py", line 119, in <module> finetune(args.d, props=args.props, mode=args.mode, pretrained_file=args.p, fix_enc=args.f, log_prefix=args.note) File "finetune.py", line 88, in finetune train_data, valid_data, saved=True, show_progress=config['show_progress'] File "/root/autodl-tmp/MM23-MISSRec/recbole/trainer/trainer.py", line 338, in fit train_loss = self._train_epoch(train_data, epoch_idx, show_progress=show_progress) File "/root/autodl-tmp/MM23-MISSRec/trainer.py", line 46, in _train_epoch losses = loss_func(interaction) File "/root/autodl-tmp/MM23-MISSRec/missrec.py", line 403, in calculate_loss seq_output, interest_orthogonal_regularization = self._compute_seq_embeddings(item_seq, item_seq_len) File "/root/autodl-tmp/MM23-MISSRec/missrec.py", line 357, in _compute_seq_embeddings interest_seq_len=unique_interest_len File "/root/autodl-tmp/MM23-MISSRec/missrec.py", line 117, in forward dec_input_emb = self.dropout(dec_input_emb) File "/root/miniconda3/envs/Paper2Env/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl return forward_call(*input, **kwargs) File "/root/miniconda3/envs/Paper2Env/lib/python3.7/site-packages/torch/nn/modules/dropout.py", line 59, in forward return F.dropout(input, self.p, self.training, self.inplace) File "/root/miniconda3/envs/Paper2Env/lib/python3.7/site-packages/torch/nn/functional.py", line 1252, in dropout return _VF.dropout_(input, p, training) if inplace else _VF.dropout(input, p, training) RuntimeError: CUDA error: device-side assert triggered Traceback (most recent call last): File "cupy_backends/cuda/api/driver.pyx", line 217, in cupy_backends.cuda.api.driver.moduleUnload File "cupy_backends/cuda/api/driver.pyx", line 60, in cupy_backends.cuda.api.driver.check_status cupy_backends.cuda.api.driver.CUDADriverError: CUDA_ERROR_ASSERT: device-side assert triggered Exception ignored in: 'cupy.cuda.function.Module.__dealloc__' Traceback (most recent call last): File "cupy_backends/cuda/api/driver.pyx", line 217, in cupy_backends.cuda.api.driver.moduleUnload File "cupy_backends/cuda/api/driver.pyx", line 60, in cupy_backends.cuda.api.driver.check_status cupy_backends.cuda.api.driver.CUDADriverError: CUDA_ERROR_ASSERT: device-side assert triggered Traceback (most recent call last): File "cupy_backends/cuda/api/driver.pyx", line 217, in cupy_backends.cuda.api.driver.moduleUnload File "cupy_backends/cuda/api/driver.pyx", line 60, in cupy_backends.cuda.api.driver.check_status cupy_backends.cuda.api.driver.CUDADriverError: CUDA_ERROR_ASSERT: device-side assert triggered Exception ignored in: 'cupy.cuda.function.Module.__dealloc__' Traceback (most recent call last): File "cupy_backends/cuda/api/driver.pyx", line 217, in cupy_backends.cuda.api.driver.moduleUnload File "cupy_backends/cuda/api/driver.pyx", line 60, in cupy_backends.cuda.api.driver.check_status cupy_backends.cuda.api.driver.CUDADriverError: CUDA_ERROR_ASSERT: device-side assert triggered Traceback (most recent call last): File "cupy_backends/cuda/api/driver.pyx", line 217, in cupy_backends.cuda.api.driver.moduleUnload File "cupy_backends/cuda/api/driver.pyx", line 60, in cupy_backends.cuda.api.driver.check_status cupy_backends.cuda.api.driver.CUDADriverError: CUDA_ERROR_ASSERT: device-side assert triggered Exception ignored in: 'cupy.cuda.function.Module.__dealloc__' Traceback (most recent call last): File "cupy_backends/cuda/api/driver.pyx", line 217, in cupy_backends.cuda.api.driver.moduleUnload File "cupy_backends/cuda/api/driver.pyx", line 60, in cupy_backends.cuda.api.driver.check_status cupy_backends.cuda.api.driver.CUDADriverError: CUDA_ERROR_ASSERT: device-side assert triggered /root/autodl-tmp/MM23-MISSRec/script
|